Электрические машины — это преобразователи энергии, устройства, которые преобразуют энергию из одной формы в другую. Они преобразуют механическую работу в электрическую энергию или наоборот.
Существуют также силовые преобразователи, которые преобразуют электрическую энергию одной формы в другую. Они называются статическими преобразователями мощности.
Ниже перечислены некоторые примеры преобразователей мощности:
- Силовые преобразователи, которые генерируют механическую работу с использованием электрической энергии, называются электрическими двигателями. Электродвигатели — это электрические машины.
- Силовые преобразователи, которые используют электроэнергию постоянного тока и напряжения и преобразуют эту энергию в электрическую энергию переменного тока и напряжения, называются инверторами. Инверторы относятся к статическим преобразователям мощности и используют полупроводниковые силовые переключатели.
- Электрические генераторы преобразуют механическую работу в электрическую энергию. Они также принадлежат к электрическим машинам.
- Силовые трансформаторы преобразуют электрическую энергию из одной системы переменного напряжения в электрическую энергию другой системы переменного напряжения, при этом две системы переменного тока имеют одинаковую частоту.
Преобразователи мощности бывают вращающиеся и статистические.
Вращающиеся преобразователи мощности
Электрические машины, преобразующие электрическую энергию в механическую работу, называются электрическими двигателями.
Электрические машины, преобразующие механическую работу в электрическую энергию, называются электрическими генераторами.
Механическая энергия обычно проявляется в форме вращательного движения. Электрические двигатели и генераторы называются преобразователями вращательной мощности или вращающимися электрическими машинами. Процесс преобразования электрической энергии в механическую работу называется электромеханическим.
Электрические машины состоят из токовых цепей, изготовленных из изолированных проводников и магнитопроводов, изготовленных из ферромагнитных материалов. Машины производят механическую работу за счет действия электромагнитных сил на проводники и ферромагнетики, соединенные магнитным полем. Проводники и ферромагнитные элементы принадлежат либо движущейся части машины (ротору), либо неподвижной части (статору). Вращение движущейся части машины способствует изменению магнитного поля. В свою очередь, в проводниках индуцируется электродвижущая сила, которая вырабатывает электрическую энергию. Аналогично, электрический ток в проводниках машины , называемых обмотками, взаимодействует с магнитным полем и создает силы, которые возбуждают движение ротора.
Статические преобразователи мощности
В отличие от электрических машин, силовые трансформаторы не содержат движущихся частей. Их работа основана на электромагнитной связи между первичной и вторичной обмотками, окружающими один и тот же магнитопровод.
В дополнение к электрическим машинам и силовым трансформаторам существуют силовые преобразователи, работа которых не основана на электромагнитной связи токовых цепей и магнитопровода.
Преобразователи, содержащие полупроводниковые силовые переключатели, известны как статические силовые преобразователи или устройства силовой электроники. Одним из таких примеров является диодный выпрямитель, содержащий четыре силовых диода, соединенных в мост. Питаемый переменным напряжением, диодный выпрямитель выдает пульсирующее постоянное напряжение. Диодный выпрямитель осуществляет преобразование электрической энергии переменного тока в электрическую энергию постоянного тока.
Преобразование электрической энергии постоянного тока в электрическую энергию переменного тока осуществляется инверторами, статическими преобразователями мощности, содержащими полупроводниковые силовые ключи, такие как силовые транзисторы или силовые тиристоры. Статические преобразователи мощности часто используются в сочетании с электрическими машинами.
Роль электромеханического преобразования энергии
Электромеханическое преобразование играет ключевую роль в производстве и использовании электрической энергии.
Электрические генераторы производят электрическую энергию, в то время как двигатели являются потребителями, преобразующими значительную часть электрической энергии в механические работы, необходимые для производственных процессов, транспортировки, освещения и других промышленных и бытовых применений.
Благодаря электромеханическому преобразованию энергия транспортируется и доставляется удаленным потребителям с помощью электрических проводников. Электрическая передача достаточна надежна, она не сопровождается выбросами газов или других вредных веществ и осуществляется с низкими потерями энергии. Существуют линии передачи постоянного тока.
На электростанциях паровые и водяные турбины производят механическую работу, которая подается на электрические генераторы. Через происходящие процессы в генераторе механическая работа преобразуется в электрическую энергию, которая доступна на клеммах генератора в виде переменного тока и напряжения.
Назначение электрических сетей в передаче электрической энергии в промышленные центры и населенные пункты, где силовые кабели и линии распределительной сети обеспечивают электроснабжение различных потребителей, расположенных в производственных цехах, транспортных единицах, офисах и домашних хозяйствах. В процессе передачи и распределения напряжение несколько раз преобразуется с помощью силовых трансформаторов. Электрические генераторы, электродвигатели и силовые трансформаторы являются жизненно важными компонентами электроэнергетической системы
Основные законы определяющие электромеханическое преобразование энергии
Электромеханическое преобразование энергии может быть достигнуто путем применения различных принципов физики. Работа электрических машин обычно основана на магнитном поле, которое соединяет токоведущие цепи и движущиеся части машины. Проводники и ферромагнитные детали в магнитном поле связи подвергаются воздействию электромагнитных сил. Проводники образуют контуры и цепи, несущие электрические токи. Связь потока в контуре может изменяться из-за изменения электрического тока или из-за движения. Изменение потока вызывает электродвижущую силу в контурах.
Основные законы физики, определяющие электромеханическое преобразование энергии в электрических машинах с магнитным полем связи следующие:
- Закон электромагнитной индукции Фарадея, который определяет взаимосвязь между изменяющимся магнитным потоком и индуцированной электродвижущей силой.
- Закон Ампера, который описывает магнитное поле проводников, несущих электрический ток
- Закон Лоренца, определяющий силу, действующую на движущиеся заряды в магнитном и электрическом полях
- Законы Кирхгофа, которые дают соотношения между напряжениями и токами в токовых цепях, а также между потоками и магнитодвижущими силами в магнитных цепях
Процесс электромеханического преобразования энергии
Процесс электромеханического преобразования энергии в электрических машинах основан на взаимодействии магнитного поля связи с проводниками, несущими электрические токи. Магнитный поток направляется через магнитопроводы, изготовленные из ферромагнитных материалов. Электрические токи направляются через токопроводящие провода. Магнитопроводы формируются путем укладки железных листов, разделенных тонкими слоями изоляции, в то время как цепи тока выполнены из изолированных медных проводников.
Три наиболее важных типа электрических машин:
- машины постоянного тока;
- асинхронные;
- синхронные.
Типы электрических машин имеют различную конструкцию и используют различные способы создания магнитных полей и токов.
Вращающиеся электрические машины имеют неподвижную часть, статор, и движущуюся часть, ротор, который может вращаться вокруг оси машины. Магнитная и токовая цепи могут быть установлены как на статор и ротор. В дополнение к магнитным и токовым цепям электрические машины также имеют другие детали, такие как корпус, вал, подшипники и клеммы токовых цепей.
Вращающиеся электрические машины
Механическая работа электрических машин может быть связана с вращением или перемещением.
Большинство электрических машин состоит из вращающихся электромеханических преобразователей, производящих вращательное движение и имеющих цилиндрические роторы.
Линейные двигатели обеспечивающие линейное перемещение подвижной части встречаются довольно редко.
Токовые цепи машины называются обмотками. Они могут быть подключены к внешним источникам электроэнергии или к потребителям электрической энергии. Концы обмотки доступны в качестве электрических клемм. Электрические клеммы обеспечивают электрический доступ к машине. Поскольку электрические машины выполняют электромеханическое преобразование, они имеют как электрический, так и механический доступ. Через электрические клеммы машина может получать электрическую энергию от внешних источников или поставлять электрическую энергию потребителям в схемы, которые являются внешними по отношению к машине. Ротор расположен внутри полого цилиндрического статора. Вдоль оси ротора расположен стальной вал, доступный с торцов станка. Угловая частота вращения ротора называется частотой вращения ротора.
Электрическая машина может выполнять или принимать механическую работу. Вал составляет механическую клемму машины. Он передает вращающий момент или просто крутящий момент внешним источникам или потребителям механической работы. Крутящий момент создается взаимодействием магнитного поля и электрического тока. Поэтому его еще называют электромагнитным моментом. В тех случаях, когда крутящий момент способствует движению и действует в направлении для увеличения скорости, это называется крутящим моментом привода.
Электрический двигатель преобразует электрическую энергию в механическую работу. Последняя подается через вал на машину, работающую в качестве механической нагрузки, также называемую рабочей машиной.
Электрический генератор преобразует механическую работу в электрическую энергию. Он получает механическую работу от водяной или паровой турбины; таким образом, мощность генератора имеет отрицательное значение. Вращающий момент турбины стремится привести ротор в движение, в то время как крутящий момент, создаваемый электрической машиной, противодействует этому движению.
Поскольку электрический генератор преобразует механическую работу в электрическую энергию и подает ее в сеть питания, мощность генератора имеет отрицательное значение. Знак этих переменных связан с опорными направлениями. Изменение опорных направлений для крутящих моментов и токов приведет к положительным крутящим моментам генератора и положительной мощности генератора.
Реверсивные машины
Электрические машины в основном реверсивны.
Реверсивная электрическая машина может работать либо как генератор, преобразующий механическую работу в электрическую энергию, либо как двигатель, преобразующий электрическую энергию в механическую работу. Переход от генератора в режим работы двигателя сопровождается изменением электрических и механических переменных, таких как напряжение, ток, крутящий момент и скорость. Режим работы может быть изменен без изменений в конструкции машины, без изменения в цепях тока и без изменений в соединении вала между электрической и рабочей машиной. Примером реверсивной электрической машины является асинхронный двигатель. При угловых скоростях вращения ротора ниже синхронной скорости асинхронная машина работает в режиме двигателя. Если скорость увеличивается выше синхронной скорости, электромагнитный крутящий момент противодействует движению, в то время как асинхронная машина преобразует механическую работу в электрическую энергию, таким образом, работая в режиме генератора.
Потери при преобразовании энергии
Преобразование энергии сопровождается потерями энергии в цепях тока, магнитных цепях, а также потерями механической энергии в результате различных форм вращательного трения. Из-за потерь значения мощности на электрическом и механическом терминалы не равны.
В режиме двигателя полученная механическая мощность несколько ниже, чем вложенная электрическая мощность из-за потерь на преобразование.
В режиме генератора полученная электрическая мощность несколько ниже, чем вложенная механическая мощность из-за потерь.