Термин “геотермальная энергия” происходит от греческого слова земля (гео) и тепловой (термальный). По сути, геотермальная энергия исходит из самой земли. Тепло от ядра земли, температура которого в среднем составляет 3600 градусов Цельсия, излучается в сторону поверхности планеты.
Обогрев источников и гейзеров под землей на глубине в несколько километров может осуществляться с помощью специальных скважин, через которые поступает горячая вода (или пар от неё) до поверхности, где она может использоваться непосредственно как тепло или косвенно для выработки электроэнергии путем включения вращающихся турбин.
Так как вода под поверхностью земли постоянно пополняется, а ядро Земли будет продолжать вырабатывать тепло относительно человеческой жизни бесконечно, геотермальная энергия,в конечном счете, чистая и возобновляемая.
Методы сбора энергетических ресурсов Земли
Сегодня есть три основных метода сбора геотермальной энергии: сухой пар, горячая вода и бинарный цикл. Процесс с сухим паром прямо вращает привода турбин генераторов электроэнергии. Горячая вода поступает снизу вверх, затем распыляется в бак, чтобы создать пар для привода турбин. Эти два метода являются наиболее распространенными, генерируя сотни мегаватт электроэнергии в США, Исландии, Европе, России и других странах. Но расположение ограничено, так как эти заводы работают только в тектонических регионах, где легче получить доступ к подогретой воде.
При технологии бинарного цикла извлекается на поверхность теплая (не обязательно горячая) вода и объединяют её с бутаном или пентаном, который имеет низкую температуру кипения. Эта жидкость перекачивается через теплообменник, где испаряется и направляется через турбину перед рециркуляцией обратно в систему. Технологии бинарного цикла дает десятки мегаватт электроэнергии в США: Калифорнии, Неваде и на Гавайских островах.
Недостатки получения геотермальной энергии
На уровне полезности, геотермальные электростанции являются дорогостоящими, чтобы построить и работать. Для поиска подходящего места требуется дорогостоящее обследование скважин без гарантии попадания в продуктивную подземную горячую точку. Тем не менее, аналитики ожидают увеличения этой мощности почти вдвое в течение следующих шести лет.
Кроме того районы с высокой температурой подземного источника находятся в районах с активными геологохимическими вулканами. Эти «горячие точки» образовались на границах тектонических плит в местах, где кора достаточно тонкая. Тихоокеанский регион, часто называют как кольцо огня для многих вулканов, где есть много горячих точек, в том числе на Аляске, Калифорнии и Орегоне. Невада имеет сотни горячих точек, охватывающих большую часть северной части США.
Есть и другие сейсмически активные районы. Землетрясения и движение магмы позволяют воде циркулировать. В некоторых местах вода поднимается к поверхности и природные горячие источники и гейзеры происходят, такие, как на Камчатке. Вода в гейзерах Камчатки достигает 95° C.
Одна из проблем открытой системы гейзеров является выделение некоторых загрязнителей воздуха. Сульфид водорода — токсичный газ с очень узнаваемым запахом «тухлого яйца» — небольшое количество мышьяка и минералов, выпущенных с паром. Соль также может представлять экологическую проблему.
На геотермальных электростанциях расположенных в море значительное количество мешающей соли накапливается в трубах. В замкнутых системах нет выбросов и возвращается вся жидкость доведенная до поверхности.
Экономический потенциал энергоресурса
Сейсмически активные точки не являются единственными местами, где можно найти геотермальную энергию. Существует постоянный запас полезного тепла для целей прямого нагрева на глубине везде от 4 метров до нескольких километров ниже поверхности практически в любом месте на земле. Даже земля на собственном заднем дворе или в местной школе имеет экономический потенциал в виде тепла, чтобы выдавать в дом или другие здания.
Кроме того существует огромное количество тепловой энергии в сухих скальных образованиях очень глубоко под поверхностью (4 – 10 км).
Использование новой технологии может расширить геотермальные системы, где люди смогут использовать это тепло для производства электроэнергии в гораздо большем масштабе, чем обычные технологии. Первые демонстрационные проекты этого принципа получения электричества показаны в Соединенных Штатах и Австралии еще в 2013 году.
Если полный экономический потенциал геотермальных ресурсов может быть реализован, то это будет представлять огромный источник электроэнергии для производственных мощностей. Ученые предполагают, что обычные геотермальные источники имеют потенциал 38 000 МВт, который может производить 380 млн МВт электроэнергии в год.
Горячие сухие породы залегают на глубинах от 5 до 8 км везде под землей и на меньшей глубине в определенных местах. Доступ к этим ресурсам предполагает введение холодной воды, циркулирующей через горячие скальные породы и отвода нагретой воды. В настоящее время нет коммерческого применения этой технологии. [highlight]Существующие технологии пока не позволяют восстанавливать тепловую энергию непосредственно из магмы, очень глубоко, но это самый мощный ресурс геотермальной энергии[/highlight].
С комбинацией энергоресурсов и ее последовательности, геотермальная энергия может играть незаменимую роль как более чистая, более устойчивая энергетическая система.
Конструкции геотермальных электростанций
Геотермальная энергия — это чистое и устойчивое тепло от Земли. Большие ресурсы находятся в диапазоне в нескольких километрах под поверхностью земли, и еще глубже, до высокой температуры расплавленной породы, называемой магмой. Но как описано выше люди пока не добрались к магме.
Практически везде, в неглубоких местах ниже 3 метров от поверхности земля имеет практически постоянную температуру от 10° до 16°C. Геотермальные тепловые насосы могут использовать этот ресурс для отопления или охлаждения зданий.
Геотермальная теплонасосная система состоит из теплового насоса, воздушной системы доставки (воздуховодов), а теплообменник — это система труб находящихся в неглубоких местах возле здания. В зимнее время тепловой насос извлекает тепло из теплообменника и подает его в крытую систему подачи воздуха. Летом происходит обратный процесс, и тепловой насос переносит тепло от внутреннего воздуха в теплообменник. Тепло, удаляемое из воздуха в помещениях в течение лета также может быть использовано, чтобы обеспечить бесплатный источник горячей воды.
Некоторые геотермальные электростанции используют пар из резервуара для вращения турбины генератора, в то время как другие используют горячую воду для кипения рабочей жидкости, которая испаряется и затем вращает турбину. Горячая вода у поверхности Земли может быть использована непосредственно для тепла. Прямое использование включает отопление зданий, выращивание растений в теплицах, сушки культур, подогрева воды в рыбоводных хозяйствах, а также ряд промышленных процессов, таких как пастеризация молока.
Структура геотермальных электростанций
Традиционная геотермальная энергия — это зрелая технология, которая может обеспечить базовую мощность или круглогодичного теплоснабжения. Ресурс может быть использован только в благоприятных регионах. Соответствие спроса на тепловую энергию от доступных ресурсов может быть сложен, учитывая стоимость и сложность транспортировки тепла на большие расстояния.
В настоящее время наиболее распространенным способом использования энергии из геотермальных источников является метод естественной «гидротермальной конвекции» где воды просачиваются через земную кору, нагреваются, а затем поднимаются к поверхности. После этого нагретая вода используется для привода электрических генераторов.
Существуют три основные конструкции для геотермальных электростанций:
- В простейшей конструкции сухой пар проходит непосредственно через турбины, а затем конденсатор, где пар конденсируется в воду.
- Во втором подходе очень горячая вода превращается в пар, который затем может использоваться для привода турбины.
- В третьем подходе, называемый бинарная система, горячая вода проходит через теплообменник, где нагревает вторую жидкость — например, изобутан — в замкнутом цикле. Изобутан кипит при низкой температуре, чем вода, поэтому он более легко превращается в пар для запуска турбины.
Технология применения определяется ресурсом. Если вода поступает из скважины как пар, она может использоваться непосредственно. Если горячая вода достаточно высокой температуры она должна пройти через теплообменник.
Первая скважина для производства энергии была пробурена до 1924 года. Более глубокие скважины были пробурены в 1950-х, но реальное развитие происходит в 1970-х и 1980-х годов.
Прямое использование геотермального тепла
Геотермальные источники также могут использоваться непосредственно для целей отопления. Горячая вода используется для обогрева зданий, выращивания растений в теплицах, сушки рыбы и сельскохозяйственных культур, улучшение добычи нефти, помощи в промышленных процессах как пастеризаторы молока и обогрев воды на рыбных фермах. В США Кламат-Фолс, штат Орегон и Бойсе, Айдахо геотермальная вода используется для обогрева домов и зданий более века. На восточном побережье, город Уорм-Спрингс, Вирджиния получает тепло непосредственно из родниковой воды, используя источники тепла на одном из местных курортов.
В Исландии практически каждое здание в стране нагревается горячей родниковой водой. В самом деле Исландия получает более 50 процентов первичной энергии из геотермальных источников. В Рейкьявике, например, (население 118 тыс. чел), горячая вода передается по конвейеру на 25 километров, и жители используют её для отопления и естественных нужд.
Новая Зеландия, получает 10% своей электроэнергии дополнительно. Геотермальная энергетика в России находится в недостаточном развитии, несмотря на наличие термальных вод.
Как раз то, что нужно.